
1

Philosophy Of Design and exploration

of financial theory for An Automated

Market Maker De-Fi Arbitrage Bot Which

execute Flash Loans to Capture The

Spread Between Price Mismatches On

A Variety of The Uniswapv2 Implemen-

tations

Evan McGrane

2

Abstract
In this paper I explain the design philosophy behind my Defi automated market maker

arbitrage bot. The bot uses the uniuswapV2 core and periphery smart contracts in order

to fetch price data from Uniswap AND any other Uniswap fork through the V2Router

so that we can capture the spread in between any existing price misstates among the

exchanges in order to simulate trades via the execution of a robust maximum profit al-

gorithm and flash swap smart contract which uses Uniswap to call the flash swap. We

will begin by exploring some of the mathematics and theory behind automated market

makers as well as looking into the core functionality of the Uniswap contracts by high-

lighting key features that I have implemented in my bot tor find arbitrage. This paper is

concluded with a small section focussed on highlighting some of the limitations and

shortcoming of my bot in a competitive environment as well as proposing some possible

strategies and techniques that could easily be employed to greatly enhance the overall

effectiveness and competitiveness of the bot for maximum profitability

1.0 Introduction: What is an automated market maker
Automated market makers are one of the most exciting thing that happened came to fruition in the DEFI space, How-

ever, at the same time they can simultaneously be one of the least understood primitives for many, especially when you

get into the technicals. AMMs trace their origins to a Reddit post by Vitalik a few years ago. From there, we had Bancor

being the first AMM live on Ethereum. However due to the incorrect use of their native BNT token, it failed to get

much traction. Until Uniswap came along and delivered on the simple promise of a properly functioning automated

market maker with no extras. Since Uniswap got traction when it launched, the AMM space took off and is has many

large players in the space today. Today there are a variety of different AMM’s, but Uniswap is what’s called a constant

product AMM. As a market maker, providing liquidity is a tedious task, it often involves locking up significant capital,

programming a trading bot and building up a feasible strategy. It is often in the hands of institutional providers where

they have the capability and incentives to build such initiatives. The AMM structure creates possible ways for any

individual to become passive market makers without worrying about the technical details for market makings. There

are a few different strategies in creating that AMM structure, we call it the constant function market makers (CFMMs),

under the CFMMs, there are a few different substructures with their unique characteristics.

𝑉 =∏𝑏𝑡
𝑊𝑡

𝑡

To understand more how CPMM’s work Lets imagine we have a AMM that exchanges between token A and token B.

Now say the AMM currently has 20 of token A in its reserve, and 40 of token B. This means that the Product is 20*40

= 800. This is the number that needs to stay constant (hence the name constant product market maker). Now lets turn

our concentration because this is where we will explore the mathematics behind how this plays out.

𝑥 × 𝑦 = 𝑘

(𝑥) = 𝑞𝑢𝑎𝑛𝑖𝑡𝑦 𝑜𝑓 𝑡𝑜𝑘𝑒𝑛1, (𝑦) = 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑜𝑓 𝑡𝑜𝑘𝑒𝑛2, (𝑘) = 𝑓𝑖𝑥𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑣𝑎𝑙𝑢𝑒

To create a uniswap market you need to provide two tokens in equal amounts. In this example lets say that we create

an DAI/ETH pair such that we provide 10 ether at 4000 dollars and 40,000 DAI at 1 dollar per dai. Effectively we now

have satisfied the constant product rule

𝐸𝑆 = 10, 𝐸𝑃 = 4000$

𝐷𝑠 = 40,000, 𝐷𝑃 = 1$

3

𝑤ℎ𝑒𝑟𝑒 𝐸𝑆 = 𝐸𝑡ℎ 𝑆𝑢𝑝𝑝𝑙𝑦, 𝐸𝑃 = 𝐸𝑡ℎ 𝑝𝑟𝑖𝑐𝑒, 𝐷𝑠 = 𝐷𝑎𝑖 𝑠𝑢𝑝𝑝𝑙𝑦, 𝐷𝑝 = 𝐷𝑎𝑖 𝑝𝑟𝑖𝑐𝑒

The in order to calculate the constant product we use the formula above. Thus, in this scenario here the the ETH/DAI

pair we woud have

𝑥 = 10 × 4000 = 40,000

≫ 𝑦 = 1 × 40,000 = 40,000

≫ 𝑥 × 𝑦 = 𝑘

≫ 𝑘 = 40,000 × 40,000 = 1,600,000,000

So if we just saw this equation, we could determine the ratio of ETH/DAI = 100,000/1,000 = 100 (which is the price

of Ethereum)! Now let's say someone would like to purchase $4000 worth of ETH from the pool. What they're essen-

tially doing is increasing y by 4000 (depositing DAI) and decreasing x = 1 (withdrawing ETH). Thus our new equation

for the their price has the form:

(𝐸𝑃 × (𝐸𝑆 − 𝐸𝑡ℎ𝑂𝑢𝑡)) × ((𝐷𝑃 × 𝐷𝑠) + 𝐷𝑎𝑖𝐼𝑛) = 1,600,000,000

(𝐸𝑃 × (𝐸𝑆 − 1)) × ((𝐷𝑃 × 𝐷𝑠) + 4000) = 1,600,000,000

(𝐸𝑝 × 9) × (1 × 40,000) + 4000) = 1,600,000,000

(𝐸𝑝 × 9) × (40,000 + 4000) = 1,600,000,000

(𝐸𝑝 × 9) =
1,600,000,000

40,000 + 4000

𝐸𝑝 =
9 × 1,600,000,000

5000
= 4040.40$

So we can see in the constant product AMM the price is always determined by supply and demand if one assets reserves

decreases then it means its being sought after and from the maths above we can see that its price increases relative to

the other asset in the pair. This is a high level overview on how a typical constant product AMM works. One of the

first AMMs in the space that got extreme traction. Uniswap v1 was innovative due to the simplicity of the protocol and

user interface. Provide a token and ETH of equal value and you’re good to go as an LP. Uniswap proved that orderbook-

less models are viable on Ethereum. Uniswap released v2 earlier this year with the ability to create a pair between two

tokens rather than forcing quotes against ETH.

However, relative to the competition Uniswap has fallen behind due to the inflexibility in fees, pool customisation,

formula and pairings. Every trade incurs a 0.3% trade fee but pool owners can’t set fees and the fee is always the same.

V3 may inch up to the competition or introduce a token, however Uniswap at this point in time is resting on the laurels

of its past.

2.0 A Closer Look At UniswapV2

4

The marginal price offered by Uniswap (not including fees) at any given time (𝑡) can be computed by dividing the

reserves of an asset (𝑎) by the reserves of asset (𝑏)

𝑝𝑡 =
𝑟𝑡
𝑎

𝑟𝑡
𝑏

Since arbitrageurs will trade with Uniswap if this price is incorrect (by a sufficient amount to make up for the 0.03%

fee), the period offered by Uniswap tends to track the relative market price of the assets. This means that it can be used

as an approximate price oracle. Uniswap V2 builds upon the oracle functionality of uniswapV1 by introduction the

concept of cumulative prices. Basically, this attributes to the measurement of the price exactly before the first trade on

each block. This price is more difficult to manipulate than prices during a block. Specifically, uniswapv2 accumulates

thus price, by keeping track of the cumulative sum of the prices at the very beginning of each block. Each price is

weighted by the amount of time has elapsed since the last block in which it was updated. This means that the accumu-

lator value at any time should be the sum of the spot price at each second in the history of the smart contract

𝑎𝑡 =∑𝑝𝑡

𝑡

𝑖=1

 (𝑤ℎ𝑒𝑟𝑒 𝒑𝒕 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑝𝑟𝑖𝑐𝑒 𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒)

To estimate the time weighted average price from time (𝑡1) to time (𝑡2), an external Calle can checkpoint the accumu-

lator’s value at (𝑡1) tand (𝑡2). The we subtract the first value from the second and divide this result by the total number

of elapsed seconds

𝑝𝑡1, 𝑡2 =
∑ 𝑝𝑖
𝑡2
𝑖=𝑡1

𝑡2 − 𝑡1
=
∑ 𝑝𝑖 −∑ 𝑝𝑖

𝑡1
𝑖=1

𝑡2
𝑖=1

𝑡2 − 𝑡1
=
𝑎𝑡2 − 𝑎𝑡1
𝑡2 − 𝑡1

Users of the Uniswap oracle smart contract can choose when to start and end the period. However, it is important to

note. The key selling point of AMM arbitrage is the ability to use flash loans or flash swaps. In Uniswap v1, a user

purchasing ABC with XYZ needs to send the XYZ to the contract before they could receive the ABC. This is incon-

venient if that user needs the ABC they are buying in order to obtain the XYZ they are paying with. For example, the

user might be using that ABC to purchase XYZ in some other contract in order to arbitrage a price difference from

Uniswap, or they could be unwinding a position on Maker or Compound by selling the collateral to repay Uniswap.

Uniswap v2 adds a new feature that allows a user to receive and use an asset before paying for it, as long as they make

the payment within the same atomic transaction. The swap function makes a call to an optional user-specified call back

contract in between transferring out the tokens requested by the user and enforcing the invariant. Once the call back is

complete, the contract checks the new balances and confirms that the invariant is satisfied. Th least noteworthy thing

to mention ere about Uniswap is their sync() event. To protect against bespoke token implementations that can update

the pair contract’s balance, Uniswap v2 has an important bail-out function called Sync(). In essence, Sync() functions

as a recovery mechanism in the case that a token asynchronously deflates the balance of a pair. In this case, trades will

receive sub-optimal rates, and if no liquidity provider is willing to rectify the situation, the pair is stuck. Sync() exists

to set the reserves of the contract to the current balances, providing a somewhat graceful recovery from this situation.

3.0 The UniswapV2 Forks

5

One other thing that is very useful is the creation of multiple other exchanges that are effectively “Uniswap clones”,

where the code base is an exact copy of that of Uniswap’s. Some well known UniswapV2 forks include SushiSwap,

Pancake Swap, Quick swap, Crow Swap, Sake Swap and more. If we have such a case where and exchange is build on

top of forking the Uniswap codebase then we have an exciting way to preform arbitrage across these Uniswap clones

in a relatively easy way. This is because Uniswap has two “main” smart contracts. Those are the Uniswap Router and

the Uniswap Factory. Liquidity providers (LP) can create token pair markets (called pools) by deploying them using

the Uniswap factory contract. Once a pool is created, anyone in the ecosystem can provide liquidity to it. Liquidity

providers earn a flat percentage fee according to their stake in the pool’s total liquidity. Shares of the pooled liquidity

are accounted for using a liquidity token, commonly known as an LP token. You can think of each LP token as a share

unit in the pool. The router is the smart contract used to interact with a token pair pool. On the other hand, Routers are

stateless, meaning they don’t hold token balances. Therefore, they can be replaced safely and in a trust less way for a

more efficient router in the future. For example, the current V2 router (02) is an upgrade from the first iteration (01).

The Router mainly has functions to do with the “swapping” and “transportation” of tokens.

All of the Uniswap forks have identical Router and Factory contracts to Uniswap. Therefor it becomes incredibly easy

to preform arbitrage between all of these cloned Uniswap AMM’s because we don’t have to concern ourselves with

writing different custom logic or taking different precautions to either manipulate data or to preform swaps on the

different exchanges. We can effectively use the uniswapV2 Router contract to initialise the state of all the other ex-

changes whiles passing in the exact addresses in order to access the data of a particular Uniswap fork AMM.

4.0 Algorithm Design
In this section I will explain my design philosophy for my Bot implementation. I just want to mention that I was

designed my arbitrage algorithm around the problem requirements and if I was to make another Bot for myself this

would not be the approach I would take. What I mean by this is sometimes the Uniswap reserves take some time to

update via the Sync() event emission. This can effectively be bad for the arbitrage algorithm as we may run into the

scenario where our algorithm calculates a profitable arb but by the time we execute the flash swap the prices actual

market prices on the exchanges may not be exactly the same. In the ideal scenario I would write my own price oracle,

perhaps base it off of the Uniswap price oracle to get much better and consistent price data. I also only used Infura as

my provider for this bot. When forking main net with ganache-cli, it seems as if ganache is even worse at listening to

these sync events. I should ideally have used the flashBots RPC node endpoint in my project to prevent frontrunning

etc but to be honest I didn’t even think of it. These two things are areas I will focus on in my own personal project.

Restricting myself to using the Uniswap factory and router contracts prevents me from arbitraging on other dexes. So,

I think an idea option would to be source my own price data via a custom built price oracle, use a flashBots’ RPC node

and use Aave as my means to perform flash swaps and preform one extra trade if needs be to get the funds back to

Aave.

4.1 Getting price data

The first step in the algorithm is to obviously get access to price data. As explained in section 2.o this can be done by

fetching the reserves of a given pair from Uniswap’s pair contract and dividing them to get the marginal price. Recall

the formula

𝑝𝑡 =
𝑟𝑡
𝑎

𝑟𝑡
𝑏

If we want to arbitrage with a pair such as DAI/WETH, then we would divide 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑊 by 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝐷 to get the price

of WETH per in terms of DAI. W can find the rate for DAI by taking the reciprocal of this value. Once we have the

price data we need to calculate our expected return that we get out for providing and input of amount (𝑥). Uniswap has

a very good function in the UniswapV2Library contract called 𝑔𝑒𝑡𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑢𝑡(). Given an input asset amount, this

function returns the maximum output amount of the other asset (accounting for fees) that we can expect to receive in

return given. The calculate amount out is given by the formula

6

𝑎𝑚𝑜𝑢𝑛𝑡𝑂𝑢𝑡 =
𝐴𝐹 × 𝑅𝑂

(𝑅𝐼𝑁 × 1000) + 𝐴𝐹

𝑤ℎ𝑒𝑟𝑒 𝐴𝐹 = 𝐴𝑚𝑜𝑢𝑛𝑡𝐼𝑛 × 997, 𝑅𝐼𝑁 = 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝐼𝑛, 𝑅𝑂 = 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑂𝑢𝑡

Say we choose to trade with 1 WETH, then we would pass in the Wei denominated value of 1 WETH into this function

in order to get the expected return in DAI. However, we can employ a powerful algorithm which will calculate the

maximum input value that we should provide in order to get a maximum return. Consider the initial state of pair0 and

pair1 in the table below

 Pair0 Pair1

Base Token Amount A1 B1

Quote Token Amount A2 B2

Table1: table showing 2 pools of the same token pair

Note in the example of DAI/WETH, from the table above here, DAI is the quote token and WETH is the Base token.

In this case we can calculate the 𝑎𝑚𝑜𝑢𝑛𝑡𝐼𝑛 to borrow to maximise our profit as:

∆𝑎1 =
∆𝑏1 × 𝑎1
𝑏2 − 𝑏2

 ∆𝑎2 =
∆𝑏2 × 𝑎2
𝑏2 − 𝑏2

The amount of the borrowed Quoe token are some so that ∆𝑏1 = ∆𝑏2, and we can let 𝑥 = ∆𝑏, then usimg this we can

calculate our expected profit as a function of (𝑥). Thus we now have:

𝑓(𝑥) = ∆𝑎2 − ∆𝑎1 =
𝑎2𝑥

𝑏2 + 𝑥
−

𝑎1𝑥

𝑏1 + 𝑥

The whole point of this algorithm is to calculate the maximum profit. So, if our profit estimations are given as this

function of (𝑥) then if we recall some simple calculus, we know that the derivative of any function can be used to

calculate the local maxima and local minima. Thus if we take the derivative of the above expression then we can

calculate our profit by evaluating the derivative at 𝑥 = 0, wghich is the local maxima.

𝑓′(𝑥) =
𝑎2𝑏2

(𝑏2 + 𝑥)
2
−

𝑎1𝑏1
(𝑏1 − 𝑥)

2

𝑎2𝑏2
(𝑏2 + 𝑥)

2
−

𝑎1𝑏1
(𝑏1 − 𝑥)

2
= 0

We can now do some simple algebraic manipulation to split this expression up a 2nd order quadratic equation. So we

will et each of the coefficients in the expression below be (𝑎), (𝑏) and (𝑐) respectively I order to simplify the maths

(𝑎1𝑏1 − 𝑎2𝑏2)𝑥
2 + 2𝑏1𝑏2(𝑎1 + 𝑎2)𝑥 + 𝑏1𝑏2(𝑎1𝑏2 − 𝑎2𝑏1) = 0

{

𝑎 = 𝑎1𝑏1 − 𝑎2𝑏2
𝑏 = 2𝑏1𝑏2(𝑎1 + 𝑎2)

𝑐 = 𝑏1𝑏2(𝑎1𝑏2 − 𝑎2𝑏1)

Now we have a reduced general quadratic equation as seen below and if we solve this we get the following solution,

also given below.

𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0

7

{

 𝑥 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
0 < 𝑥 < 𝑏1
𝑥 < 𝑏2

The solution (𝑥) represents the amount hat we need to borrow from pair0 in order to get the maximum returns in an

arbitrable case.

Uniswap then provides another powerful function called 𝑔𝑒𝑡𝐴𝑚𝑜𝑢𝑛𝑡𝐼𝑛() that given a specified desired output amount

of an asset, returns the required minimum input amount of the other asset to get the specified amount. The formula fo

this calculation is as follows

𝑎𝑚𝑜𝑢𝑛𝑡𝐼𝑛 = (
𝑅𝐼𝑁 × 𝐴𝑂) × 1000

(𝑅𝑂 − 𝐴𝑂) × 997
) + 1

𝑤ℎ𝑒𝑟𝑒 𝐴0 = 𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑢𝑡, 𝑅𝐼𝑁 = 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝐼𝑛, 𝑅𝑂 = 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑂𝑢𝑡

However before we can use these prices to calculate the difference and hence our expected profit in any case we need

to first figure out whether to trade in the DAI/WETH direction or the WETH/DAI direction. I have written a smart

contract called 𝑇𝑟𝑎𝑑𝑒𝑂𝑟𝑑𝑒𝑟. 𝑠𝑜𝑙 which uses the reserves for the pair in both pools on two given exchanges in order to

determine the following criteria

1. Which of the two tokens is smaller (by the value of its address not by price)

2. Which of the pools is smaller by the value of their reserves?

3. Order the reserves in every scenario such that [𝑎1, 𝑏1, 𝑎2, 𝑏2], where (𝑎1, 𝑏1) =the

pool with the lower price denominated in the quote token and (𝑎2, 𝑏2) = the base to-

kens in the two pools

In order to figure out what direction we need to trade in we must consider the base token. Recall that the base token is

TOKENY such that the pair is in the form TOKENX/TOKENY. We can calculate which token in the pair should be

the base token by using the following conditions.

 if (pool0token0 is in the predefined baseToken array) then {

 baseTokenSmaller = true, the pair is ordered TOKEN0/TOKEN1

 } else if (pool0token0 is in the predefined baseToken array) then {

 baseTokenSmaller = false, the pair gets ordered TOKEN1/TOKEN0

 }

Once we have established whether or not the base token that we predefine is smaller in order to correctly choose the

trade direction then we have what we need to order our reserves. We need to order the token reserves in both pools in

order to fix it so that we are always borrowing form the lower price pool and selling to the higher price pool. To

establish which pool is the lower price pool we need to first calculate the pair margin price using (1) for each case. One

for the case when the base token is smaller and two for the case when the base token is not smaller. Tahe formulas for

both bases are as follows:

(𝑖𝑓 𝑏𝑎𝑠𝑒 𝑡𝑜𝑘𝑒𝑛 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑟) 𝑝𝑡𝑜𝑘𝑒𝑛0 =
𝑝𝑜𝑜𝑙0𝑅𝑒𝑠𝑒𝑟𝑣𝑒0
𝑝𝑜𝑜𝑙0𝑅𝑠𝑒𝑟𝑣𝑒1

, 𝑝𝑡𝑜𝑘𝑒𝑛1 =
𝑝𝑜𝑜𝑙1𝑅𝑒𝑠𝑒𝑟𝑣𝑒0
𝑝𝑜𝑜𝑙1𝑅𝑒𝑠𝑒𝑟𝑣𝑒1

8

(𝑖𝑓 𝑏𝑎𝑠𝑒 𝑡𝑜𝑘𝑒𝑛 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑚𝑎𝑙𝑙𝑒𝑟) 𝑝𝑡𝑜𝑘𝑒𝑛0 =
𝑝𝑜𝑜𝑙0𝑅𝑒𝑠𝑒𝑟𝑣𝑒1
𝑝𝑜𝑜𝑙0𝑅𝑠𝑒𝑟𝑣𝑒0

, 𝑝𝑡𝑜𝑘𝑒𝑛1 =
𝑝𝑜𝑜𝑙1𝑅𝑒𝑠𝑒𝑟𝑣𝑒1
𝑝𝑜𝑜𝑙1𝑅𝑒𝑠𝑒𝑟𝑣𝑒0

Essentially if the base token is smaller, we divide the reserves as normal where we divide 𝑅𝑒𝑠𝑒𝑟𝑣𝑒0 by 𝑅𝑒𝑠𝑒𝑟𝑣𝑒1.

However, recall that if the base token is not smaller than the quote token, we reverse the trade direction. Therefore, in

order to get the price in this case we need to divide the reserves in the opposite manner. Once we have determined the

price of the tokens in the pair, we finally have all of the information we need to effectively order the reserves such that

the order is (𝑙𝑜𝑤𝑒𝑟𝑃𝑟𝑖𝑐𝑒𝑃𝑜𝑜𝑙, ℎ𝑖𝑔ℎ𝑒𝑟𝑃𝑟𝑖𝑐𝑒𝑃𝑜𝑜𝑙). We can use the price information calculated above to order the

reserves for both pools. Let’s say that the ordered reserves need to take following form

𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠 = [𝑎1, 𝑎2, 𝑏1, 𝑏2]

𝑤ℎ𝑒𝑟𝑒 (𝑎1, 𝑏1) = 𝑡ℎ𝑒 𝑝𝑜𝑜𝑙𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑙𝑜𝑤𝑒𝑟 𝑝𝑟𝑖𝑐𝑒 𝑑𝑒𝑛𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑞𝑢𝑜𝑡𝑒 𝑡𝑜𝑘𝑒𝑛

𝑎𝑛𝑑 (𝑎2, 𝑏2) = 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑡𝑜𝑘𝑒𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑝𝑜𝑜𝑙𝑠

In the case where 𝑝𝑡𝑜𝑘𝑒𝑛0 from above is less than 𝑝𝑡𝑜𝑘𝑒𝑛1 then we know that the lower pool is going to be 𝑝𝑜𝑜𝑙0 and

the higher pool is going to be 𝑝𝑜𝑜𝑙1. And for the reserves they will be ordered the following was.

𝑐𝑎𝑠𝑒 𝑤ℎ𝑒𝑟𝑒 𝑏𝑎𝑠𝑒𝑇𝑜𝑘𝑒𝑛 𝑰𝑺 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑎𝑛𝑑 𝑝𝑡𝑜𝑘𝑒𝑛0 < 𝑝𝑡𝑜𝑘𝑒𝑛1:

𝑎1 = 𝑝𝑜𝑜𝑙0𝑅𝑒𝑠𝑒𝑟𝑣𝑒0

𝑎2 = 𝑝𝑜𝑜𝑙0𝑅𝑒𝑠𝑒𝑟𝑣𝑒1

𝑏1 = 𝑝𝑜𝑜𝑙1𝑅𝑒𝑠𝑒𝑟𝑣𝑒0

𝑏2 = 𝑝𝑜𝑜𝑙1𝑅𝑒𝑠𝑒𝑟𝑣𝑒1

𝑐𝑎𝑠𝑒 𝑤ℎ𝑒𝑟𝑒 𝑏𝑎𝑠𝑒𝑇𝑜𝑘𝑒𝑛 𝑰𝑺 𝑵𝑶𝑻 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑎𝑛𝑑 𝑝𝑡𝑜𝑘𝑒𝑛0 < 𝑝𝑡𝑜𝑘𝑒𝑛1

𝑎1 = 𝑝𝑜𝑜𝑙0𝑅𝑒𝑠𝑒𝑟𝑣𝑒1

𝑎2 = 𝑝𝑜𝑜𝑙0𝑅𝑒𝑠𝑒𝑟𝑣𝑒0

𝑏1 = 𝑝𝑜𝑜𝑙1𝑅𝑒𝑠𝑒𝑟𝑣𝑒1

𝑏2 = 𝑝𝑜𝑜𝑙1𝑅𝑒𝑠𝑒𝑟𝑣𝑒0

𝑐𝑎𝑠𝑒 𝑤ℎ𝑒𝑟𝑒 𝑏𝑎𝑠𝑒𝑇𝑜𝑘𝑒𝑛 𝑰𝑺 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑎𝑛𝑑 𝑝𝑡𝑜𝑘𝑒𝑛0 > 𝑝𝑡𝑜𝑘𝑒𝑛1

𝑎1 = 𝑝𝑜𝑜𝑙1𝑅𝑒𝑠𝑒𝑟𝑣𝑒0

𝑎2 = 𝑝𝑜𝑜𝑙1𝑅𝑒𝑠𝑒𝑟𝑣𝑒1

𝑏1 = 𝑝𝑜𝑜𝑙0𝑅𝑒𝑠𝑒𝑟𝑣𝑒0

𝑏2 = 𝑝𝑜𝑜𝑙1𝑅𝑒𝑠𝑒𝑟𝑣𝑒1

𝑐𝑎𝑠𝑒 𝑤ℎ𝑒𝑟𝑒 𝑏𝑎𝑠𝑒𝑇𝑜𝑘𝑒𝑛 𝑰𝑺 𝑵𝑶𝑻 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑎𝑛𝑑 𝑝𝑡𝑜𝑘𝑒𝑛0 > 𝑝𝑡𝑜𝑘𝑒𝑛1

9

𝑎1 = 𝑝𝑜𝑜𝑙1𝑅𝑒𝑠𝑒𝑟𝑣𝑒1

𝑎2 = 𝑝𝑜𝑜𝑙1𝑅𝑒𝑠𝑒𝑟𝑣𝑒0

𝑏1 = 𝑝𝑜𝑜𝑙0𝑅𝑒𝑠𝑒𝑟𝑣𝑒1

𝑏2 = 𝑝𝑜𝑜𝑙0𝑅𝑒𝑠𝑒𝑟𝑣𝑒0

This might seem confusing but its not really to bad. Basically, we are using the state of the base token in the pairs and

also the price of the pairs to order the reserves such that they are ordered from the lower price pool to the higher price

pool. The reason we have four check is because we have two cases for when 𝑝𝑡𝑜𝑘𝑒𝑛0 < 𝑝𝑡𝑜𝑘𝑒𝑛1 and comversley two

cases for when 𝑝𝑡𝑜𝑘𝑒𝑛0 > 𝑝𝑡𝑜𝑘𝑒𝑛1. Those cases being when the base tojen is and isn’t smaller. When we have our

reserves ordered we can be confident that based on the token address and the pair price data that we are always going

to be borrowing from the lower pool and selling to the higher. Once we have the reserves ordered we can use the

maximum profit algorithm described above to calculate the 𝐼𝑛 and 𝑂𝑢𝑡 amounts from the Uniswap 𝑔𝑒𝑡𝐴𝑚𝑜𝑢𝑛𝑡𝐼𝑛()

and 𝑔𝑒𝑡𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑢𝑡() functions. When this step is complete, and we have the expected by and sell price of the pairs

on both pools we can calculate the difference to estimate the potential profit if any

We can efficiently use these two functions to determine if there is an arbitrage opportunity for a given trade on two

Uniswap-esque exchanges. For example, lets say we want to take a flash loan off Uniswap to trade with and preform

arbitrage on another exchange to keep the profits. Well, using the uniswapRouterContract, we could call the

𝑔𝑒𝑡𝐴𝑚𝑜𝑢𝑛𝑡𝐼𝑛() on Uniswap and specify 1 ether as the amount we want to get as a return. Then the formula above

would return us the minimum number of DAI that we would have to trade in order to get 1 WETH. Once we have this

DAI amount, we can conversely call the 𝑔𝑒𝑡𝐴𝑚𝑜𝑢𝑛𝑡𝑂𝑢𝑡() function on say sushiSwap for example by passing in this

1 WETH. According to the formula above this would return to us the maximum amount that we can expect to receive

for the trade. With these two values if the amount of DAI that we receive back on sushiSwap is greater than the amount

of DAI we originally spend on Uniswap, then we have profit which will be equal to the difference after we pay back

the Uniswap flash loan that we borrowed. To estimate this difference we apply the following formula

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐴𝑚𝑂𝑢𝑡𝑢𝑛𝑖𝑠𝑤𝑎𝑝 − 𝐴𝑚𝐼𝑛𝑠𝑢𝑠ℎ𝑖𝑠𝑤𝑎𝑝

𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 × 𝑎𝑚𝐼𝑛𝑢𝑛𝑖𝑠𝑤𝑎𝑝

If this total difference is greater than zero, we have a potential profitable opportunity. However, in order to calculate

out final profit we must take into account the gas costs that are required in order to execute all of the trades that we

need to capture this arbitrage. There are a few different functions that we need to call from different smart contracts.

Firstly, we need to approve the uniswapRouter Contract to spend tokens on our behalf. The we need to estimate the gas

for a Uniswap flash loan, a transfer of this loan to the sushiSwap exchange, another swap on sushiSwap and then one

more transfer back to Uniswap to pay back the loans. We can estimate the gas for all of this by using the 𝑊𝑒𝑏3. 𝑗𝑠
libraries’ .estimateGas() function. Thus we have the following pseudo Code:

GasForApproval = DAI.approve().estimateGas()
GasFaorFlashLoan = FlashBot.flashSwap().estimateGas()
combinedGas = GasForApproval + gasForFlashLoan
gasPrice = web3.eth.getGasPrice()
TotalGas = gasPrice x combinedGas / 10 ** 18

These estimations roughly estimate that the gas price to execute the entire trade will be 0.0072 ETH. But this price may

vary depending on the current gas Price at the time of the trade. When we have the total estimated gas we can subtract

this from the total difference above in order to calculate our final estimated profit margin

𝑡𝑜𝑡𝑎𝑙𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑡𝑜𝑡𝑎𝑙𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑡𝑜𝑡𝑎𝑙𝐺𝑎𝑠

10

If this number is grater than zero then we are expected to make a profit and thus we call my FlashBot smart contract in

order to execute the trade. This is effectively the main algorithm its simple and concise. There is more detailed logic in

the smart contract themselves. I have written some logic that takes in the two pair pools and depending on the size of

the reserves we reorder the token pool reserves for doing the price calculations in such a way that we always borrow

from the lower price pool and sell to the higher price pool. As you will see in my code doing this prevents me from

having to potentially running my algorithm for DAI/WETH and WETH/DAI simultaneously on both exchanges, as by

ordering the token pair and reserves in such a ways that if the base token is smaller we reverse the per order and also

that we always order to reverse to borrow from the lower pool means we will always be executing the trade for the

most profitable case. The flash swap contract itself is also simple. I have written a custom flash swap function which

was inspired from the example given in the Uniswap docs but I felt that mine is more robust and the call back function

is also similar but I have added my own custom logic. All of the code is very well commented for you to read so I will

leave this section at that.

5.0 Considerations & Improvement Proposals
Although I have had one successful arbitrage flash swap with my bot on a main net forked environment most of the

time there is no arbitrage available. In this section I will go over some improvement proposals to maximise the chances

of getting arbitrage. Firstly, there is too many bots running in the wild, especially on Ethereum and binance smart chain.

Although I think my Bot code is rather good, in the grand scheme of things a bot that I made I a week is too simple to

be competitive with production bots that are employed by different collectives. However, there are many different

strategies and technique that we could employ to be more competitive. Some of which include

1. Lower the network latency by using out own custom node

2. Set higher gas prices to make sure out transactions get settled quickly enough to take profit.

This is like a competition between bots if they find a profitable trade at the same time

3. Although this is not a problem here, monitoring les tokens can help. The more we monitor

the lesser frequency the bot is looping. A good work around is to run multiple scripts at once

to monitor separate pairs

4. Going to other lesser used blockchains like Fantom, Matic, Polygon etc. These blockchains

will have lesser bots running on them so it would be easier to be more competitive

5. Do some other works such as liquidation bots, arbitrage in balancer or curve or 0x for exam-

ple.

The above examples are just a few of many different techniques that we could employ to make out bot more efficient.

Also to reiterate what I said in section 1, writing our own oracle to get better quality and more up to date rice data

would hugely benefit in finding slim arbitrage opportunities. The fact that in my bot I have to reply on the Uniswap

Sync() event to get price updates from the reserve is a big point of failure because the reserves don’t update frequently

enough at all to be competitive. Using chain-link would be desirable but sadly there is no way to get specific price data

on specific exchanges using chain-link. This the best option would be to write a custom oracle.

Also, In the Ethereum me pool, ex predators take the form of these more sophisticated “arbitrage bots” which can front

run our transactions. Sophisticated Arbitrage bots can monitor pending transactions and attempt to exploit profitable

opportunities created by them. No white hat knows more about these bots than Phil Daian, the smart contract researcher

who, along with his colleagues, wrote the Flash Boys 2.0 paper and coined the term “miner extractable value” (MEV).

In theory MEV accrues entirely to miners because miners are the only party that can guarantee the execution of a

profitable MEV opportunity. In practice, however, a large portion of MEV is extracted by independent network partic-

ipants referred to as "searchers." Searchers run complex algorithms on blockchain data to detect profitable MEV op-

portunities and have bots to automatically submit those profitable transactions to the network. With that, for some

11

highly competitive MEV opportunities, such as DEX arbitrage which is what we are concerned with, searchers may

have to pay 90% or even more of their total MEV revenue in gas fees to the miner because so many people want to run

the same profitable arbitrage trade. This is because the only way to guarantee that their arbitrage transaction runs is if

they submit the transaction with the highest gas price.

One last strategy then, that we could then employ is to interact with the flashBots relays through one of their RPC

endpoints. The great thing about flashBots is that they connect searchers directly to miners and allows them to avoid

the public tx pool. Searchers with transactions they would like to send miners first craft what we call "bundles" and

send these to FlashBots' MEV-Relay. MEV-Relay is a gateway that FlashBots runs today which simulates searchers'

bundles, and if there are no errors then forwards them on to miners. Miners then receive bundles and include them in

blocks if it is profitable for them to do so. FlashBots offer frontrunning protection which is very desirable on Uniswap

and other AMM’s

6.0 Conclusion
In this paper we explored some of the underlying mathematics and theory associated with automated market makers as

well as looking specifically at the inner workings of some of the key features of the Uniswap protocol in order to

understand the reasons behind the strategy I used to develop my AMM arbitrage bot algorithm. I just want to highlight

that I made a testing environment where I used open zeppelin to create an mint dummy ERC20 tokens which I then

added liquidity to n Uniswap in such a sway that there was always a large price mismatch between the pairs on both

pools. This way I was able to test my flashBot smart contract. In the real forked main net environment I have success-

fully picked up one successful arbitrage trade where I received a profit of 0.003 Ether from a flashloan of 100 ether.

The arbitrage was captured between Uniswap and sake swap. I have had a few arbitrage trades but all of them were

non profitable after the gas estimations. Do the conclusion is that my Bot does work and I do intend to deploy it on

main net sometime soon once I can afford the crazy deployment costs.

Proof of my first successful Arb This is also recorded in a mongo DB logger I made for

my bot

12

13

